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Collimation with hollow electron beams is a technique for halo control in high-power hadron

beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong

axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The

concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun in-

stalled in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this

technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was

built and tested. The expected performance of the hollow electron beam collimator was based on

Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements

of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core

lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed.

Hardware specifications were based on the Tevatron devices and on preliminary engineering inte-

gration studies in the LHC machine. Required resources and a possible timeline were also outlined,

together with a brief discussion of alternative halo-removal schemes and of other possible uses of

electron lenses to improve the performance of the LHC.
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I. INTRODUCTION

Hollow electron beam collimation is a novel technique for beam collimation and halo scraping [1, 2]. It

was tested experimentally at the Fermilab Tevatron collider [3–6]. A magnetically confined, possibly pulsed,

low-energy (a few keV) electron beam with a hollow current-density profile overlaps with the circulating

beam over a length of a few meters. If the electron distribution is axially symmetric, the beam core is

unperturbed, whereas the halo experiences smooth and tunable nonlinear transverse kicks. The electron

beam is generated by a hollow cathode and transported by strong solenoidal fields. The size, position,

intensity, and time structure of the electron beam can be controlled over a wide range of parameters.

The technique relies on robust conventional collimators to absorb particles. However, it has several fea-

tures that can complement a classic multi-stage collimation system. In the case of high-power proton beams,

for instance, scraping is smooth, controllable, and there is no material damage of the scrapers themselves. A

depletion zone is generated between the proton beam core and the primary collimator edges, making local

energy deposition less sensitive to beam jitter, collimator movements, orbit and tune adjustments, or fast

failures in the case of crab-cavity operation. Enhanced halo diffusion and larger impact parameters may

also improve the overall cleaning efficiency; in the case of ions, these effects would reduce uncontrolled

losses due to fragmentation.

This method may provide a unique option to complement the LHC collimation system. To study its

implementation, a conceptual design for the LHC upgrade was completed. This may then develop into

a technical design in 2014–2015, with the goal to build the devices in 2015–2017, after resuming LHC

operations and re-assessing needs and requirements with 6.5-TeV protons. Installation during the next long

LHC shutdown (LS2), currently scheduled for 2018, would be technically possible. In case of a resource-

limited timeline, installation during the following long shutdown (in 2022) is also an option. In this case,

more advanced solutions may be tested and included in the design.

II. MOTIVATION AND STRATEGY

The requirements for improved beam collimation are being addressed with high priority in preparation

for the LHC Run 2 at higher energy (6.5 TeV) and for the LHC high-luminosity upgrades (HL-LHC Project).

The present estimates are based on the operational experience accumulated at 3.5 TeV and 4 TeV during the

LHC Run 1 and indicate that the halo cleaning performance of the present collimation system is expected

to be adequate for operations after the current long shutdown (LS1) [7, 8]. Caveats obviously apply due to

the uncertainty on the extrapolations to higher beam energies, intensities and luminosities. A recent review

of the LHC collimation project strongly advised to study possible improvements of the present system, with

explicit support for the hollow electron beam option [8]. While final decisions on further upgrades can

only be taken after sufficient operational experience at higher energy, it is important to continue critical

studies to identify possible improvements for implementation in the next long shutdown (LS2), starting in
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2018. Hollow electron beam scraping is a promising enhancement and complement to the present LHC

collimation system.

In 2012, the primary collimators cut into the beam halo down to 4.3σp (where σp is the transverse rms

proton beam size, excluding dispersion), which was required to push the amplitude function at the collision

points β ∗ down to 60 cm [9]. This corresponded to half gaps of about 1 mm, i.e. as small as the nominal

design values for 7-TeV operations. Under these conditions, and contrary to what was observed in previ-

ous years with more relaxed collimator settings, the operation was significantly affected by beam losses

throughout the operational cycle [10]. About 40 fills were lost due to various beam instabilities before

establishing collisions. The interplay between collimator impedance and beam-beam effects is being inves-

tigated as a possible source of beam losses. The outcome of a dedicated hollow electron lens review [11]

indicated that the functionality of the hollow electron beams demonstrated at the Tevatron would be very

useful to improve the LHC operation is case of the beam losses observed in 2012.

The present collimation system cannot easily be used for active and smooth halo scraping during high-

intensity operations. Scraping would only be possible by intercepting halo particles with primary collimator

jaws, resulting in sharp loss spikes. The operation with bulk material very close to the beam core poses also

issues in terms of collimator impedance and material robustness in case of failures, which would not apply

if electron beams were used.

It was therefore decided that hollow electron beam collimation studies should be pursued with high

priority [12]. The immediate goal is to achieve a technical design report for the construction of 2 hollow

electron beam devices by 2015, when the needs for beam scraping at the LHC can be addressed based on

solid operational experience at higher energy.

Although they are not the focus of this report, there are other possible uses of electron lenses in the LHC:

(a) generation of tune spread for Landau damping to stabilize the beams before collisions; (b) compensa-

tion of long-range beam-beam interactions in upgrade scenarios with smaller crossing angles to improve

luminosity, as an alternative to compensation wires [13].

III. EXPECTED PERFORMANCE AND PARAMETER DEFINITIONS

In this Section, we describe the principles of hollow electron beam collimation, its impact on beam halo

dynamics, and the causes and mitigation of possible unwanted effects on the beam core. A set of working

parameters (summarized in Table I) is derived.

A. Electron lenses and collimation with hollow electron beams

Hollow electron beam collimation is based on the technology of electron cooling and electron lenses.

Electron lenses were developed for beam-beam compensation in colliders [14–16], enabling the first

observation of long-range beam-beam compensation effects by shifting the betatron tunes of individual
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bunches [17]. They were used for many years during regular Tevatron collider operations for cleaning un-

captured particles from the abort gap [18]. Thanks to the reliability of the hardware, one of the two Tevatron

electron lenses (TEL-2) could be used for experiments on head-on beam-beam compensation in 2009 [19],

and for exploring hollow electron beam collimation in 2010–2011 [3–5]. Electron lenses for beam-beam

compensation were built for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory

and are currently being commissioned [20].

Figure 1 shows the layout of the beams in one of the Tevatron electron lenses. The beam is formed in

the electron gun inside a conventional solenoid and guided by strong axial magnetic fields. Inside the su-

perconducting main solenoid, the circulating beam interacts with the electric and magnetic fields generated

by the electrons. The electron beam is then extracted and deposited in the collector. The hardware installed

in the Tevatron tunnel is shown in Figure 2.

The halo of the circulating beam, i.e. particles with betatron amplitudes that exceed the inner radius

of the hollow electron beam, is affected by nonlinear transverse kicks (Figure 3). The angular kick θ

experienced by a proton at radius r traversing a hollow electron beam enclosing current Ier in an interaction

region of length L is given by the following expression:

θ =
2IerL(1±βeβp)

rβeβpc2(Bρ)p

(
1

4πε0

)
, (1)

where ve = βec is the electron velocity, vp = βpc the proton velocity, and (Bρ)p is the magnetic rigidity of

the proton beam. The ‘+’ sign applies when the magnetic force is directed like the electrostatic attraction

(ve ·vp < 0), whereas the ‘−’ sign applies when ve ·vp > 0. For example, in a configuration with Ier = 5 A,

L = 3 m, βe = 0.195 (10-keV electrons), r = 2.5 mm, the corresponding kick is θ = 0.3 µrad for 7-TeV

protons. Because of the betatron oscillations of the protons, the transverse kicks have different magnitudes

at each turn. The strength of the kicks is proportional to the electron beam current and can be easily

controlled. The particles in the core of the circulating beam (whose amplitudes are smaller than the inner

electron-beam radius) are unaffected if the distribution of the electron charge is axially symmetric.

The main advantages over conventional collimators are that the transverse kicks are controllable, there

is no material deformation or damage, the magnetized hollow electron beam has a low impedance, and the

position and size of the electron beam are set by configuring the magnetic-field transport.

The Tevatron experiments on hollow electron beam collimation were conducted on antiprotons, mainly

at the end of regular collider stores. In some cases, the electron beam was turned on for the whole duration

of the fill after collisions were established. Because of the flexible pulsing pattern of the high-voltage

modulator [21], the electron beam could be synchronized with a subset of bunches, providing a direct

comparison with the unaffected beam. The main results of hollow electron beam collimation in the Tevatron

can be summarized as follows [3–6]:

• the use of the electron lens was compatible with collider operations during physics data taking;

• the alignment of the electron beam with the circulating beam was accurate and reproducible;
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• the halo removal rates were controllable, smooth, and detectable;

• with aligned beams, there was no lifetime degradation or emittance growth in the core;

• loss spikes due to beam jitter and tune adjustments were suppressed;

• the local effect of the electron beam on beam halo fluxes and diffusivities were directly measured

with collimator scans.

In this report, we focus on the issues arising from the extension of the technique to the Large Hadron

Collider.

B. Effects on halo dynamics

1. Beam optics and geometrical parameters

The LHC primary collimators will be placed at around 6σp from the beam axis. For scraping the halo

of a 7-TeV proton beam, we envision the inner radius of the electron beam in the interaction region rmi

to be placed between about 4σp and 8σp of the LHC proton rms beam size σp = 0.32 mm. This size is

derived from the nominal normalized rms emittance εp = 3.75 µm and the typical amplitude function at

the candidate locations, β = 200 m. Scraping of elliptical proton beams is possible with orbit bumps or by

displacing the electron beam, but for simplicity we focus on round beams.

For stability and for transport efficiency, the field in the guiding solenoids should be as large as possible.

Based upon previous experience and technical feasibility, we consider configurations where the gun, main

(superconducting), and collector solenoids have fields in the ranges 0.2 T ≤ Bg ≤ 0.4 T, 2 T ≤ Bm ≤ 6 T,

and 0.2 T≤ Bc ≤ 0.4 T, respectively. This implies magnetic compression factors k≡
√

Bm/Bg in the range

2.2 ≤ k ≤ 5.5, which sets the required sizes of the cathode inner and outer radii (Figure 4). The 1-inch

electron gun cathode built for this purpose (Section IV B), for instance, has inner radius rgi = 6.75 mm and

outer radius rgo = 12.7 mm. After magnetic compression, these radii translate to 1.2 mm = 3.9σp ≤ rmi ≤
9.5σp = 3.0 mm and 2.3 mm = 7.3σp ≤ rmo ≤ 18σp = 5.7 mm in the interaction region inside the main

solenoid, according to the relation r2
gi ·Bg = r2

mi ·Bm for magnetically confined electron beams.

2. Halo removal rates

One of the main goals of the design study is to ensure that halo removal rates for 7-TeV protons are

detectable, usable, and calculable.

The scraping experiments at the Tevatron with 0.98-TeV antiprotons were done with peak electron beam

currents up to 1.2 A. Halo removal times ranged between seconds and minutes, depending upon the ra-

dius and intensity of the electron beam. They were observable both with colliding beams and with only

antiprotons in the machine.
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The transverse kicks generated by the hollow electron beam are nonlinear and have a small random

component due to noise in the electron beam current. These kicks interact with the lattice nonlinearities and

with the sources of noise in the machine. Therefore, the kicks needed to obtain a given halo removal rate

may not scale directly with the magnetic rigidity of the circulating beam.

Tracking simulations in the Tevatron lattice with the LIFETRAC code showed that relatively small elec-

tron currents could significantly enhance halo removal [22]. The removal rates are sensitive to the shape of

the electron beam and to the distribution of the halo population. It was observed that tracking codes could

give rough but conservative estimates of the removal rates. Numerical simulations of the LHC lattice with

the SIXTRACK code indicated that, in the absence of beam-beam interactions and of diffusion processes,

removal of 7-TeV protons with a 1-A electron beam current would be slow [23, 24]. These simulations were

done with a simplified halo distribution (horizontal only, no momentum spread) and without collisions.

More realistic simulations with the LIFETRAC code were performed in the nominal LHC lattice

(V6.503), with nominal beam parameters, at 7 TeV, with and without collisions [25]. The machine lat-

tice did not include multipole errors, which is a conservative assumption when calculating achievable

removal rates. The hollow lens had the same nominal parameters (1.2-A total current without turn-by-turn

modulations, inner radius at 4σp) and it was placed at the candidate location in IR4 (see Section IV A). The

cleaning rate for a uniform halo placed between 4σp and 6σp (Gaussian in the longitudinal direction) was

2% of the halo population per hour without beam-beam interactions, and 30% per hour with collisions.

The prototype LHC electron gun (Section IV B) had a yield of over 5 A at 10 keV. This yield should be

appropriate for 7-TeV protons. For instance, at a yield of 3.6 A, the simulations predict a halo cleaning rate

of 40% per hour without collisions and up to 4% per minute with collisions.

Different pulsing schemes were also pursued to extend the capabilities of the technique, by exploiting the

flexibility of the modulator pulsing patterns. Most of the Tevatron scraping experiments were done with the

same turn-by-turn excitation intensity on the bunches of interest. However, for beam-beam compensation

purposes, the high-voltage modulator was designed to handle bunch-by-bunch adjustments, with 10%–90%

rise times of 200 ns [21]. Moreover, fast abort-gap cleaning was achieved by turning on the electron beam

every 7th turn, in resonance with the betatron oscillations of the uncaptured beam [18].

In the LHC, one could change the electron beam current turn by turn, synchronizing the voltage change

with the abort gap, for instance. Train-by-train (900-ns separation) or even batch-by-batch (225 ns) inten-

sity modulations are feasible; this allows one to preserve the halo on a subset of bunches for diagnostics

and machine protection. Bunch-by-bunch adjustments every 25 ns or 50 ns would be challenging and are

probably unnecessary for collimation.

This flexibility opens up the possibility to operate the hollow electron lens in different pulsing modes:

• continuous — the same voltage is applied every turn;

• resonant — the voltage is changed turn by turn according to a sinusoidal function (possibly including

a frequency sweep to cover the tune spread of the halo), or with the same amplitude, but skipping a
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given number of turns (as in the Tevatron abort-gap cleaning mode);

• stochastic — the voltage is turned on or off every turn according to a random function, or a random

component is added to a constant voltage amplitude.

These modes of operation were simulated with tracking codes [23–25]. Both the resonant and the stochastic

mode gave significant and tunable halo removal rates. While the first was sensitive to the details of the tune

distribution (lattice nonlinearities, beam-beam interactions), the stochastic mode was much more robust.

The introduction of stochastic turn-by-turn modulation of the electron beam current significantly

ehnances the halo cleaning efficiency, making the electron lens the dominant loss-driving mechanism.

The cleaning rates for the cases with and without beam-beam interactions do not differ as much as in the

continuous mode. In either case, 50% of halo is removed in 200 s with a yield of 1.2 A, and 80% at 3.6 A.

The maximum cleaning rate attained in the stochastic mode was about 100% per minute.

3. Diffusion enhancement

Using collimator scans, it was possible to measure the effects of collisions and of the hollow electron

lens on halo diffusion in the Tevatron as a function of betatron amplitude [26, 27]. The hollow electron lens

could enhance halo diffusivity in action space by two orders of magnitude. Diffusivities in action space

with and without collisions were also measured in the LHC [28]. Halo suppression is the main focus of this

project and the main consequence of the drift and diffusion enhancement by the electron beam. However,

we intend to further investigate other aspects as well, such as the increase in impact depth on the primary

collimators and the possible resulting improvement of collimation efficiency.

4. Other effects of halo depletion

Particle removal was not the only effect that could be measured in the Tevatron. Thanks to the gated loss

monitors (Section III A), other consequences of halo depletion could be observed [4–6]: the suppression

of Fourier components of losses related to beam jitter; the removal of the correlations between losses from

different bunch trains due to orbit fluctuations; and the suppression of loss spikes induced by collimator

setup or by tune adjustments. Because of the much larger beam power in the LHC, the capability to distribute

losses in time may prove very useful.

C. Undesired effects on the core

1. Current-density asymmetries in the electron beam

The core of the circulating beam is unaffected if the distribution of the electron charge is axially sym-

metric. One possible cause of asymmetry is the space-charge evolution of the electron beam. Other sources
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of asymmetry are the bends that are used to inject and extract the electron beam from the interaction region.

The electron beam was turned on for several hours during some Tevatron collider stores. With aligned

beams and continuous operation, no deterioration of the core lifetimes, emittances, or luminosities were

observed. Only a limited number of experiments were done in resonant mode (by skipping turns). In these

cases, the electron lens caused emittance growth and luminosity degradation. A quantitative analysis of the

experiments is under way.

The current-density profiles generated by the hollow electron guns were measured in the Fermilab

electron-lens test stand as a function of beam current and axial magnetic field. Space-charge evolution

of the electron beam profiles was mitigated by increasing the guiding magnetic fields. Experiments in the

test stand, analytical calculations, and numerical simulations with the WARP particle-in-cell code [29] con-

firmed that, for main fields above 2 T and beam currents up to several amperes, transverse current-density

profiles were practically frozen.

The calculation of the electric fields from the measured current density profiles and the generation of the

kick maps caused by the bends is described in Refs. [30, 31]. These fields were used as inputs for tracking

simulations to estimate beam lifetimes and emittance growth rates. For the Tevatron lattice and working

point, the only azimuthal asymmetry seen to cause extra losses in the core was the quadrupole component

in a particular resonant mode (pulsing every 6th turn) [22]. In LHC simulations with LIFETRAC, the bends in

continuous mode had no effect on lifetimes, emittances, or dynamic aperture [25]. However, the simulations

suggest that, for the stochastic mode, the uncompensated dipole component of the bending section kick may

introduce emittance growth that depends on the electron lens design. Namely, the gun-side and collector-

side bending sections of the electron lens can be either on the same side of the device (as in the Tevatron

and RHIC electron lenses), or on opposite sides of the device with respect to the beam propagation. In the

former case, the dipole components of horizontal kick from the bends add up, which leads to the horizontal

emittance growth. In the latter case, the dipole components subtract leaving only higher order multipole

harmonics. The impact of these higher order harmonics on luminosity lifetime is estimated at about 1%

per hour. Although this effect is undesirable, it is slow compared to the scraping time scales envisioned

for the stochastic mode. Moreover, further optimizations of the bending sections are possible. Because the

stochastic mode of operation offers greater flexibility, the above considerations point towards an electron

lens design with the gun and the collector bends on opposite sides.

2. Impedance of the electron beam

An early concern on the use of electron lenses for beam-beam compensation in colliders was the stability

of the beams. The electron beam is continuously renewed, so only intrabunch effects were important in the

Tevatron. In particular, a displaced head of the circulating bunch could distort the electron beam, whose

electromagnetic fields could in turn act back on the bunch tail, causing oscillations in the electron trajectory

and a fast transverse mode coupling instability. A 10-keV electron beam traverses the overlap region of 3 m
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in about 50 ns. For LHC bunch spacings of 25 ns or 50 ns, coupled-bunch modes may need to be included.

The electron beam is made stiff by increasing the axial solenoidal field, reducing its effective impedance.

Instability thresholds for the head-on beam-beam case were estimated in Ref. [32]. The stability of the sys-

tem was indirectly confirmed by routinely operating the Tevatron electron lenses above 1 T. For the hollow-

beam case, requirements are expected to be much less stringent because of the smaller fields generated by

a distorted hollow density distribution near its axis. The impedance of the electron-lens hardware (without

electron beam) is discussed in Section IV G.

D. Further experimental tests

Electron lenses are being commissioned at RHIC for head-on beam-beam compensation [20], and this

is the first priority for studies when beam is available. The 2014 run will focus on ion operations with

Au-Au collisions. The earliest operation with protons (p-p or p-Au) is currently scheduled for 2015. It was

suggested that further experiments with hollow electron beams on protons at BNL could address some of

the operational scenarios not tested at the Tevatron, such as dynamical use during ramp and squeeze, or a

systematic study of pulsed modes.

IV. HARDWARE SPECIFICATIONS AND INTEGRATION STUDIES

In this Section, we describe some of the practical aspects of the implementation of electron lenses

in the LHC, taking into account what was achieved with the Tevatron and RHIC electron lenses and the

specific LHC conditions. This work will serve as the basis for a detailed technical design report. Table I

summarizes the main characteristics of the device. A detailed description of the Tevatron hardware can be

found in Ref. [15].

A. Physical and mechanical features

The second Tevatron electron lens (TEL-2) occupies 5.8 m of tunnel length, is 1.7-m wide, 1.5-m tall

(including current and cryogenic leads), and weighs about 2 t. The radius of the cryostat is 0.3 m. We

first considered reusing TEL-2 and installing it in the LHC. Candidate locations (RB-44 and RB-46) were

identified on each side of the radiofrequency insertion at IR4 (Figures 5 and 6). In addition to the available

longitudinal space, these locations were originally chosen because of the availability of cryogenic infras-

tracture and because of the large interaxis distance (420 mm) between the two beam pipes to accomodate

the TEL-2 cryostat. Beam optics is also favorable (Figure 7): the beams are practically round and the lattice

functions are of the order of 200 m. Three-dimensional drawings of TEL-2 were produced. Preliminary

integration studies by Y. Muttoni’s team showed that the hardware would fit, but it would require a rotation

of the cryostat and of the gun/collector solenoids (Figure 8). Although this is feasible, the design of new
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cryostats for the LHC tunnel would probably be preferable.

B. Hollow electron guns

A prototype hollow electron gun for the LHC was designed, built, and tested at the Fermilab electron-

lens test stand (Figure 9). Its design was based on previous electron guns used in the Tevatron. The

tungsten dispenser cathode with BaO:CaO:Al2O3 impregnant has an annular shape and a convex surface to

increase perveance [33]. The outer diameter is 25.4 mm and the inner diameter is 13.5 mm. A filament

heater was used to reach the operating temperature of 1400 K. The shape of the extraction electrodes to

achieve the desired current-density distribution in the space-charge-limited regime were calculated with the

ULTRASAM code [34]. This gun had a perveance of 5.3 µperv. This means that it could yield more than

5 A of peak current at a cathode-anode voltage of 10 kV (Figure 10). The current-density distribution was

measured as a function of voltage and of axial magnetic field. The results of the characterization were

reported in Refs. [35, 36].

C. Vacuum

The Tevatron electron lenses were evacuated with 4 ion pumps (255 l/s nominal total) and reached a

typical residual pressure of 10−9 mbar. The insulating vacuum between the cold mass and the warm beam

pipe was 10−6 mbar. Accessible components were baked with heat tapes, whereas baking of inner surfaces

was provided by heating foils. In the LHC, the electron lens has to include, on each side, a vacuum isolation

module with gate valves, nonevaporable getter (NEG) cartridges, pumps, and vacuum gauges. The length of

each of these modules is about 0.8 m. Surfaces need to be certified for pressure and electron-cloud stability

(electron-cloud multiplication is suppressed when the solenoids are on).

D. Electrical systems

The TEL-2 gun and collector resistive solenoids required 340 A to reach 0.4 T. The superconducting

main solenoid yielded 6.5 T at 1780 A. The cathode, profiler electrode, anode bias, and collector require

10-kV high-voltage power supplies.

A high-voltage modulator is used to pulse the anode and extract current from the cathode. It needs to

deliver 10 kV with a 10%-90% rise time of 200 ns and a repetition rate of 35 kHz (3 times the revolution

frequency). This repetition rate would allow synchronization of the electron beam with a subset of bunches

for tests and for direct comparison with the unaffected bunches. The modulator requirements for collimation

are less stringent than those achieved with the TEL-2 stacked-transformer modulator for bunch-by-bunch

voltage adjustments in the Tevatron [21].
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E. Cryogenics

Installation time is dominated by cryogenic integration, which would be similar to that of a stand-alone

magnet at 4.5 K. It requires at least 3 months for warm-up, connection of the dedicated supply/return

interfaces with the distribution line (QRL), and cool-down. Electron lenses may benefit from the dedicated

rf refrigerator proposed for installation in 2018. The Tevatron devices had static heat loads of 12 W for the

helium vessel at 4 K and 25 W for the liquid nitrogen shield. Nitrogen is not available in the LHC tunnel,

but high-pressure (20 bar) gaseous helium could be used instead for the shield. In the Tevatron, the magnet

string cooling system provided a flux of 90 l/s of liquid helium. The quench protection system would have

to be integrated with that of the LHC.

F. Diagnostics and controls

The main superconducting solenoid incorporates 6 corrector magnets (1 long dipole positioned between

2 short dipoles in each plane) for the alignment of the electron beam. Two stripline pickups (each one

with both horizontal and vertical plates) are positioned at the upstream and downstream ends of the overlap

region for accurate beam position monitoring of both the long electron pulses and the short proton pulses.

Sensitive loss monitors (such as scintillator paddles or diamond detectors), positioned at the nearest aperture

restrictions, can be used to verify the relative beam alignment. In addition, if the loss monitors are gated and

synchronized with subsets of bunches, they can provide a direct comparison between the intensity decay

rates, loss fluctuations, and halo diffusivities of bunches with and without the electron-lens effect.

Monitoring of the electron beam profiles can be achieved with flying wires or with fluorescent screens

at low currents, and with pinhole scans in the collector at high currents. A direct measurement of the halo

population (through synchrotron light or induced fluorescence, for instance), although not strictly necessary,

would greatly benefit this project and LHC operations in general [37]. Biased electrodes on each side of the

overlap region can be used for clearing residual-gas ions if necessary.

An electron lens test stand at CERN (possibly in collaboration with the development of the ELENA

electron cooler [38]) should be developed to characterize components and to develop diagnostic techniques.

G. Impedance of the electron-lens hardware

Bunch structure and beam intensities in the LHC are very different from those in the Tevatron. This

translates into tighter requirements on the electromagnetic impedance of the electron-lens hardware. (The

impedance effects of the electron beam itself are discussed in Section III C 2.) In the Tevatron, the typical

rms bunch length was 2 ns and the bunch spacing was 395 ns. In the LHC, the bunch spacing is 25 ns or

50 ns, and the typical bunch length is 0.3 ns.

The total longitudinal impedance of the Tevatron vacuum chamber and components was a few ohms [39],
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whereas the LHC broad-band longitudinal impedance budget is only 90 mΩ [40]. TEL-2 stretched-wire

measurements showed several peaks between 0.1 Ω and 1 Ω in the frequency range 0.1–1 GHz [41], con-

firming recent preliminary simulations, which identified trapped modes in the electrode structure (injection

chamber, clearing electrodes, beam position monitors, etc.) [42]. The design of the electron-lens electrodes

will have to include provisions (such as rf shields) to suppress wake fields, but this should not constitute a

major obstacle. The preliminary analysis of transverse impedances has not raised any issues so far.

V. RESOURCES AND SCHEDULE

The construction cost of each of 2 electron lenses (one per beam) for the LHC is estimated to be 2.5 M$

in materials and 3.0 M$ in labor. This includes engineering, electron guns, resistive and superconducting

solenoids, vacuum chambers, electrodes, cabling, instrumentation, and controls.

Construction of 2 devices would take about 3 years. Construction in 2015–2017 and installation during

a long shutdown in 2018 is technically feasible. Reuse of some of the Tevatron equipment, such as super-

conducting coils, conventional solenoids, power supplies, and electron guns, is also possible. Fermilab and

BNL have the capabilities and facilities for building the electron lens hardware.

Contributions in the areas of design, construction, commissioning, numerical simulations, beam studies,

and project management will be specified in an agreement between CERN and US LARP.

VI. ALTERNATIVE HALO-REMOVAL SCHEMES

Hollow electron beam collimation is being evaluated in comparison with other halo scraping techniques:

tune modulation, damper excitation, and beam-beam wire compensators.

Tune modulation with warm quadrupoles was used in HERA at DESY to counteract the effects of power-

supply ripple [43, 44]. It was suggested that this technique may allow one to excite a subset of particles

in tune space. Preliminary simulations with the SIXTRACK code indicated that the halo cannot be re-

moved as selectively [24]. Bunch-by-bunch differences due to collision patterns are also a limitation of

this method. Further investigations and experimental tests are needed. Narrow-band excitations with the

transverse damper system were also proposed as a halo reduction method [45]. In this case, bunch-by-

bunch excitations are possible. Beam tests are planned for 2015, after resuming LHC operations. Damper

excitation also operates in tune space, where the core and the halo of the beam are not necessarily separated.

Wire compensators for long-range beam-beam interactions are another method one could use to manipu-

late the dynamic aperture in a controlled way. It turns out that magnetically confined pulsed electron beams

may actually provide a better alternative not only for scraping but also for long-range compensation, be-

cause they are not electrically neutral (therefore requiring much less current), because no material in close

proximity with the circulating beam is involved, and because their strength can be different for different

bunches [13].
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VII. CONCLUSIONS

Experimental and numerical studies were conducted to support the conceptual design of a hollow elec-

tron beam collimator for the LHC, a promising technique for controlled scraping of very intense beams. This

technique may be used in all cases in which material damage, localized instantaneous energy deposition, or

impedance limit the use of conventional collimators.

The design was based on the experience of the existing Tevatron and RHIC electron lenses. The ex-

pected halo cleaning performance and the mitigation of undesired effects on the beam core were inferred

from the Tevatron experiments and from numerical tracking simulations. A hollow electron gun with geo-

metrical features and peak current yields appropriate for the LHC was built and tested. To achieve a wide

range of halo removal rates, several electron beam pulsing modes were studied. Hardware parameters and

instrumentation options were defined. No major obstacles were identified in the integration of the devices

in the LHC ring from the point of view of electromagnetic impedance, mechanical engineering, or cryo-

genics. Required resources were outlined. Studies of possible alternative schemes were initiated. Further

experimental tests may be possible with the RHIC electron lenses to extend the Tevatron results. We also

identified other uses of electron lenses that could improve the performance of the LHC: generation of tune

spread for beam stabilization before collisions; and long-range beam-beam compensation for luminosity

upgrade scenarios with small crossing angles.

Our studies suggest that hollow electron beam collimation could be implemented in the LHC, if needed.

This conceptual design report will serve as the basis for a detailed technical design.
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TABLES

Table I. List of hollow electron lens parameters for the LHC. The requirements on the electron beam current stem

from the magnetic rigidity of the proton beam, from the length of the interaction region, and from the size of the

electron beam (Section III A). The size of the cathode is determined by the proton beam size, by the desired range of

scraping positions, and by the available magnetic fields (Section III B 1).

Parameter Value or range

Beam and lattice

Proton kinetic energy, Tp [TeV] 7

Proton emittance (rms, normalized), εp [µm] 3.75

Amplitude function at electron lens, βx,y [m] 200

Dispersion at electron lens, Dx,y [m] ≤ 1

Proton beam size at electron lens, σp [mm] 0.32

Geometry

Length of the interaction region, L [m] 3

Desired range of scraping positions, rmi [σp] 4–8

Magnetic fields

Gun solenoid (resistive), Bg [T] 0.2–0.4

Main solenoid (superconducting), Bm [T] 2–6

Collector solenoid (resistive), Bc [T] 0.2–0.4

Compression factor, k ≡
√

Bm/Bg 2.2–5.5

Electron gun

Inner cathode radius, rgi [mm] 6.75

Outer cathode radius, rgo [mm] 12.7

Gun perveance, P [µperv] 5

Peak yield at 10 kV, Ie [A] 5

High-voltage modulator

Cathode-anode voltage, Vca [kV] 10

Rise time (10%–90%), τmod [ns] 200

Repetition rate, fmod [kHz] 35
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FIGURES

protons antiprotons
hollow electron beam

Figure 1. Layout of the beams in the second Tevatron electron lens (TEL-2). The electron beam is generated and

accelerated in the electron gun, transported through the overlap region with strong axial fields, and deposited in the

collector. Dimensions are in millimeters.

Figure 2. Photograph of the second Tevatron electron lens (TEL-2) after installation in the Tevatron tunnel in 2006.
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Figure 3. Concept of hollow electron beam collimation. The top plot illustrates schematically the transverse layout

of the beams in the overlap region assuming cylindrical symmetry. The bottom two plots show a numerical example:

the electron charge density ρ and current density jz as a function of radial position (middle plot); the radial electric

field Er(r) and azimuthal magnetic field Bφ (r) generated by the electron beam (bottom plot).
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Figure 4. Illustration of magnetic compression of the electron beam (gray) in an electron lens, as the axial magnetic

field varies inside the solenoids (thin solid line).

Figure 5. Schematic diagram of the LHC. Candidate locations for the electron lenses are RB-44 and RB-46 at Point 4,

on each side of the interaction region IR4, which houses the accelerating cavities.
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Figure 6. Photograph of RB-46, one of the candidate locations, east of IR4. In this view, Beam 1 is on the inside,

moving away from the viewer. The first downstream element is the green synchrotron-light undulator. The interaxis

beam-pipe separation is 420 mm. The RB-44 location has a very similar (mirror-imaged) configuration. (Photo taken

by V. Previtali on November 10, 2011.)
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Figure 7. LHC machine lattice near the interaction region IR4. The candidate locations RB-44 (smaller s coordinate)

and RB-46 (larger s) are marked with the dashed lines.
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Figure 8. Integration study of a Tevatron electron lens (TEL-2) at the RB-44 location in LHC. Transverse space

constraints require a rotation of 80◦ around the beam axis with respect to the Tevatron configuration.

Figure 9. Assembly of the prototype (1-inch) hollow electron gun. The first photograph shows the base flange with

electrical connections. In the second photo, one can see the hollow cathode with convex surface and the rim of the

control electrode; both are surrounded by cylindrical heat shields. The mounting of the copper anode is shown in the

third picture. The last picture shows the complete assembly.
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stand. The total peak current at the cathode Ie is plotted as a function of the cathode-anode voltage Vca.
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